Want to learn more about Lunit AI Solutions? Let’s connect! Contact Us

Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs

Ju Gang Nam et al. - European Respiratory Journal 2020

AUTHORS

Ju Gang Nam, Minchul Kim, Jongchan Park, Eui Jin Hwang, Jong Hyuk Lee, Jung Hee Hong, Jin Mo Goo, Chang Min Park

PUBLISHED

European Respiratory Journal 2020

Abstract


We aimed to develop a deep-learning algorithm detecting 10 common abnormalities (DLAD-10) on chest radiographs and to evaluate its impact in diagnostic accuracy, timeliness of reporting, and workflow efficacy.

DLAD-10 was trained with 146 717 radiographs from 108 053 patients using a ResNet34-based neural network with lesion-specific channels for 10 common radiologic abnormalities (pneumothorax, mediastinal widening, pneumoperitoneum, nodule/mass, consolidation, pleural effusion, linear atelectasis, fibrosis, calcification, and cardiomegaly). For external validation, the performance of DLAD-10 on a same-day CT-confirmed dataset (normal:abnormal, 53:147) and an open-source dataset (PadChest; normal:abnormal, 339:334) was compared to that of three radiologists. Separate simulated reading tests were conducted on another dataset adjusted to real-world disease prevalence in the emergency department, consisting of four critical, 52 urgent, and 146 non-urgent cases. Six radiologists participated in the simulated reading sessions with and without DLAD-10.

DLAD-10 exhibited areas under the receiver-operating characteristic curves (AUROCs) of 0.895–1.00 in the CT-confirmed dataset and 0.913–0.997 in the PadChest dataset. DLAD-10 correctly classified significantly more critical abnormalities (95.0% [57/60]) than pooled radiologists (84.4% [152/180]; p=0.01). In simulated reading tests for emergency department patients, pooled readers detected significantly more critical (70.8% [17/24] versus 29.2% [7/24]; p=0.006) and urgent (82.7% [258/312] versus 78.2% [244/312]; p=0.04) abnormalities when aided by DLAD-10. DLAD-10 assistance shortened the mean time-to-report critical and urgent radiographs (640.5±466.3 versus 3371.0±1352.5 s and 1840.3±1141.1 versus 2127.1±1468.2, respectively; p-values<0.01) and reduced the mean interpretation time (20.5±22.8 versus 23.5±23.7 s; p<0.001).

DLAD-10 showed excellent performance, improving radiologists' performance and shortening the reporting time for critical and urgent cases.


Read the full paper
Chest

More from Blog

No Data