Want to learn more about Lunit AI Solutions? Let’s connect! Contact Us

Artificial intelligence algorithm for subclinical breast cancer detection

Jonas Gjesvik et al. et al. - JAMA Network

AUTHORS

Jonas Gjesvik, MSc1; Nataliia Moshina, MD, PhD1; Christoph I. Lee, MD, MS2,3; Diana L. Miglioretti, PhD4,5; Solveig Hofvind, PhD1,6

1Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway

2Department of Radiology, University of Washington School of Medicine, Seattle

3Fred Hutchinson Cancer Center, Seattle, Washington

4Division of Biostatistics, Department of Public Health Sciences, University of California, Davis

5Kaiser Permanente Washington Health Research Institute, Seattle

6Department of Health and Care Sciences, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway

PUBLISHED

JAMA Network

Abstract


Importance 

Early breast cancer detection is associated with lower morbidity and mortality.


Objective 

To examine whether a commercial artificial intelligence (AI) algorithm for breast cancer detection could estimate the development of future cancer.

Design, Setting, and Participants

This retrospective cohort study of 116 495 women aged 50 to 69 years with no prior history of breast cancer before they underwent at least 3 consecutive biennial screening examinations used scores from an AI algorithm (INSIGHT MMG, version 1.1.7.2; Lunit Inc; used September 28, 2022, to April 5, 2023) for breast cancer detection and screening data from multiple, consecutive rounds of mammography performed from September 13, 2004, to December 21, 2018, at 9 breast centers in Norway. The statistical analyses were performed from September 2023 to August 2024.


Exposure

Artificial intelligence algorithm score indicating suspicion for the presence of breast cancer. The algorithm provided a continuous cancer detection score for each examination ranging from 0 to 100, with increasing values indicating a higher likelihood of cancer being present on the current mammogram.


Main Outcomes and Measures 

Maximum AI algorithm score for cancer detection and absolute difference in score among breasts of women developing screening-detected cancer, women with interval cancer, and women who screened negative.


Results 

The mean (SD) age at the first study round was 58.5 (4.5) years for 1265 women with screening-detected cancer in the third round, 57.4 (4.6) years for 342 women with interval cancer after 3 negative screening rounds, and 56.4 (4.9) years for 116 495 women without breast cancer all 3 screening rounds. The mean (SD) absolute differences in AI scores among breasts of women developing screening-detected cancer were 21.3 (28.1) at the first study round, 30.7 (32.5) at the second study round, and 79.0 (28.9) at the third study round. The mean (SD) differences prior to interval cancer were 19.7 (27.0) at the first study round, 21.0 (27.7) at the second study round, and 34.0 (33.6) at the third study round. The mean (SD) differences among women who did not develop breast cancer were 9.9 (17.5) at the first study round, 9.6 (17.4) at the second study round, and 9.3 (17.3) at the third study round. Areas under the receiver operating characteristic curve for the absolute difference were 0.63 (95% CI, 0.61-0.65) at the first study round, 0.72 (95% CI, 0.71-0.74) at the second study round, and 0.96 (95% CI, 0.95-0.96) at the third study round for screening-detected cancer and 0.64 (95% CI, 0.61-0.67) at the first study round, 0.65 (95% CI, 0.62-0.68) at the second study round, and 0.77 (95% CI, 0.74-0.79) at the third study round for interval cancers.


Conclusions and Relevance

In this retrospective cohort study of women undergoing screening mammography, mean absolute AI scores were higher for breasts developing vs not developing cancer 4 to 6 years before their eventual detection. These findings suggest that commercial AI algorithms developed for breast cancer detection may identify women at high risk of a future breast cancer, offering a pathway for personalized screening approaches that can lead to earlier cancer diagnosis.


Read the full paper
AIBreastBreast CancerCancer AICancer ScreeningdiagnosticJAMAJAMA NetworkLunit INSIGHTmammographyscreening

More from Blog

No Data